Tuesday, 14 May 2013

Blood Protein Rejuvenates Aging Heart

                                         
Using proteomics in combination with a 19th-century surgical technique in which the circulatory systems of two mice are joined together, researchers have demonstrated that a protein found only in the blood of young mice reverses the effects of aging in old mice, according to a study published this week (May 9) in Cell.
“I think it’s a stunning result that, for the first time, points at a secreted protein that maintains the heart in a young state,” cardiologist Deepak Srivastava of the Gladstone Institute of Cardiovascular Disease in San Francisco, who was not involved with the research, told Nature. “That’s pretty remarkable.”
Heart failure in elderly people is often caused by cardiac hypertrophy, a thickening of the heart muscle that results in the shrinking of the chambers within. To understand what causes this age-related thickening, and to search for a way to reverse it, stem cell biologists from Harvard University tested the effect of circulating factors in young blood on aging hearts.
To do so, they turned to a centuries-old technique called heterochronic parabiosis, in which two live animals of different ages are surgically joined together to share blood circulation. Having surgically linked the blood supply of five 2-year-old mice with five 2-month-old mice, the researchers found that, after 4 weeks of exposure to young blood, the older mice’s heart muscles had dramatically thinned and softened.
Using protein-analysis techniques to narrow down the list of what could be responsible for this reversal, the researchers identified a molecule called growth differentiation factor 11 (GDF-11), a circulating factor in young mice that declines with age. The team then showed old mice treated with GDF-11 for 30 days experienced that same heart rejuvenation as those in the parabiosis experiment, demonstrating that the molecule—which also appears in human blood—may hold promise for treating cardiac aging.

Wednesday, 1 May 2013

Wind Turbines in building

wind turbinesThe Bahrain World Trade Center is the first skyscraper to have wind turbines integrated into the structure of the building.
Three large wind turbines are suspended between two office towers. The towers are aerodynamically tapered to funnel wind and draw air into the turbines. latest invention
This airfoil tapering allows the wind to enter the turbines at a perpendicular angle and increases air speed as much as 30 percent in each of the 95 ft wide turbine rotors.
The turbines supply about 15 percent of the electricity used by the skyscraper - approximately the same amount of electricity used by 300 homes.

Gyro Technology


motorcycle-inventionThis wild new motorcycle, invented by 19-year-old Ben J. Poss Gulak, is among the latest inventions to capture attention. Debuting at the National Motorcycle Show in Toronto, the "Uno" uses gyro technology for balance and acceleration.
It's a battery charged machine that accelerates by leaning forward and slowing down by leaning backwards.
The Uno weighs approximately 129 pounds (58 kg.) and has a top speed of 25 mph (40 klms).
Update: Since featuring Ben's invention, he has continued to develop and progress with his innovative product.
He won second place in the Intel International Science and Engineering Fair, and first prize in Popular Science's Invention Awards. Ben also appeared on the Tonight Show with Jay Leno and on the popular invention television show "Dragon's Den" where he received 1.25 million dollars from investors.
Gulak continues to develop and commercialize his invention while studying engineering at the Massachusetts Institute of Technology. The latest prototype, known as the Uno 3, can automatically transform itself from a uno-dicycle into a conventional looking motorcycle, which allows for greater acceleration, speed and stability.
Ben shares this advice for inventors, "When you have an idea, it's easy to get discouraged. There are so many people who will tell you that you're wasting your time. The biggest thing is to not let people get you down. If you really believe in something - keep going after it because there is always a way and you can make your dreams come true."

THE SQUARE

latest inventions
Jack Dorsey, the co-inventor of Twitter, is promoting his latest invention called the Square.
The square is a small plug-in attachment to your mobile phone that allows you to receive credit card payments.
The idea originated from Dorsey's friend Jim McKelvey who was unable to sell some glass work to a customer because he couldn't accept a particular card being used.
Accepting credit card payments for something you're selling isn't always easy, especially if you are mobile like a tradesman, delivery service or a vendor at a trade show.
This latest invention uses a small scanner that plugs into the audio input jack on a mobile device.
It reads information on a credit card when it is swiped. The information is not stored on the device but is encrypted and sent over secure channels to banks.
It basically makes any mobile phone a cash register for accepting card payments.
As a payer, you receive a receipt via email that can be instantly accessed securely online. You can also use a text message to authorize payment in real time.
Retailers can create a payer account for their customers which accelerates the payment process.
For example, a cardholder can assign a photo to their card so their photo will appear on the phone for visual identity confirmation. Mobile devices with touch screens will also allow you to sign for goods.
There are no contracts, monthly fees, or hidden costs to accept card payments using Square and it is expected the plug-in attachment will also be free of charge.
A penny from every transaction will also be given to a cause of your choice.
As with Twitter, it's anticipated that Dorsey will direct the company based upon feedback from users.
Square Inc. has offices in San Francisco, Saint Louis and New York and is currently beta testing the invention with retailers in the United States.

Invention Of Oxygen Particle That, Allows You To Live Without Breathing

A team of scientists at the Boston Children’s Hospital have invented what is being considered one the greatest medical breakthroughs in recent years. They have designed a microparticle that can be injected into a person’s bloodstream that can quickly oxygenate their blood. This will even work if the ability to breathe has been restricted, or even cut off entirely.
This finding has the potential to save millions of lives every year. The microparticles can keep an object alive for up to 30 min after respiratory failure. This is accomplished through an injection into the patients’ veins. Once injected, the microparticles can oxygenate the blood to near normal levels. This has countless potential uses as it allows life to continue when oxygen is needed but unavailable. For medical personnel, this is just enough time to avoid risking a heart attack or permanent brain injury when oxygen is restricted or cut off to patients.
Dr. John Kheir, who first began the study, works in the Boston Children’s Hospital Department of Cardiology. He found inspiration for the drug in 2006, when he was treating a girl in the ICU who had a sever case of pneumonia. At the time, the girl didn’t have a breathing tube, when at the time she suffered from a pulmonary hemorrhage. This means her lungs had begin to fill up with blood, and she finally went into cardiac arrest. It took doctors about 25 minutes to remove enough blood from her lungs to allow her to breath. Though, the girl’s brain was severely injured due to being deprived of oxygen for that long and she eventually died.

Microparticle Composition

The microparticles used are composed of oxygen gas pocketed in a layer of lipids. A Lipid is a natural molecule that can store energy and act as a part of a cell membrane, they can be made of many things such as wax, vitamins, phospholipids, and in this case fat is the lipid that stores the oxygen.
These microparticles are around two to four micrometers in length and carry about three to four times the oxygen content of our own red blood cells. In the past, researchers had a difficult time succeeding as prior tests caused gas embolism. This meant that the gas molecules would become stuck trying to squeeze through the capillaries. They corrected this issue by packaging them into small deformable particles rather ones where the structure was rigid.

Potential Future Uses

Medical: There is the obvious medical uses where the microparticles can be used to save off death from a restriction in breathing due to inflammation of the lungs, collapsed lungs, and the like. It would be good to have these injections ready in hospitals and ambulances for when the time is needed.
Military: Can you imagine a navy seals capability when they wouldn’t need to surface for air and could stay underwater for over 20 minutes? If a boat was to begin to sink, you could shoot yourself as the boat is going down to ensure you aren’t drowned in the under current of the sinking vessel. How about for toxic gases when a facemask is unavailable. The military could have a number of uses for such a medical advancement.
Private Sector: Really this can be used as a precaution for anything nautical where the potential to drown is a real danger. Deep sea rescue crews could inject themselves prior to making a rescue, underwater welders can use it in case they become stuck or air is lost to their suits. The potential use for anything water related seems extremely worthwhile.

Conclusion
In the end, this is an amazing medical advancement and I cant help but recall the movie the Abyss when they took the pill, their helmets filled with air, and they were told they can breathe the water. Well what if they really couldn’t “breathe” water” but since the urge to breathe is natural, that must take place… even if you’re not breathing air per se. But your body was provided with enough oxygen for a time period by taking a pill. It’s just goes to show that anything, absolutely anything that can be thought up, can potentially one day become reality. Thank you scientists, for reminding me that people and their ingenuity are nothing short of awesome.